Adaptive neural tree exploiting expert nodes to classify high-dimensional data

By: Shadi Abpeikar, Mehdi Ghatee, Gian Luca Foresti & Christian Micheloni

Published: Neural Networks, Volume 124, April 2020, Pages 20-38.

Abstract:

Classification of high dimensional data suffers from curse of dimensionality and over-fitting. Neural tree is a powerful method which combines a local feature selection and recursive partitioning to solve these problems, but it leads to high depth trees in classifying high dimensional data. On the other hand, if less depth trees are used, the classification accuracy decreases or over-fitting increases. This paper introduces a novel Neural Tree exploiting Expert Nodes (NTEN) to classify high-dimensional data. It is based on a decision tree structure, whose internal nodes are expert nodes performing multi-dimensional splitting. Any expert node has three decision-making abilities. Firstly, they can select the most eligible neural network with respect to the data complexity. Secondly, they evaluate the over-fitting. Thirdly, they can cluster the features to jointly minimize redundancy and overlapping. To this aim, metaheuristic optimization algorithms including GA, NSGA-II, PSO and ACO are applied. Based on these concepts, any expert node splits a class when the over-fitting is low, and clusters the features when the over-fitting is high. Some theoretical results on NTEN are derived, and experiments on 35 standard data show that NTEN reaches good classification results, reduces tree depth without over-fitting and degrading accuracy.

Keywords

Neural tree, Expert systems, High-dimensional features, Data complexity, Feature clustering

Leave a comment

Your email address will not be published. Required fields are marked *